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here are probably many inequivalent statements
in spherical geometry, somehow reducing to the
Pythagorean theorem in the limit of an infinite radius

of curvature r. Among these, the Law of Cosines,

cosðc=rÞ ¼ cosða=rÞ cosðb=rÞ;

for a spherical right triangle with hypotenuse c and legs a and
b, is generally presented as the ‘spherical Pythagorean the-
orem’. Still, it has to be remarked that this formula does not
have an immediate meaning in terms of areas of simple
geometrical figures, as the Pythagorean theorem does. There
is no diagram that can be drawn on the surface of the sphere
to illustrate the statement in the spirit of ancient Greek
geometry. In this note I reconsider the issue of extending the
geometrical Pythagorean theorem to non-Euclidean geom-
etries (with emphasis on the more intuitive spherical
geometry).1 In apparent contradiction with the statement
that the Pythagorean proposition is equivalent to Euclid’s
parallel postulate, I show that such an extension not only
exists, but also yields a deeper insight into the classical
theorem.

The subject matter being familiar, I can dispense with
preliminaries and start right in with Euclid’s Elements [1].

The Pythagorean Theorem
The most celebrated theorem in mathematics [3] appears as
Proposition 47 of Book I of Euclid’s Elements. It says:

In right-angled triangles the square on the side opposite
to the right angle equals [the sum of] the squares on the
sides containing the right angle.

The words ‘the square on the side’ refer to the area of the
square constructed on the side, which only incidentally
corresponds to ‘the square of the side’ in the sense of the
second power of the length of the side. This correspondence
no longer holds in spherical or hyperbolic geometry, gen-
erating not a little confusion about what the generalization of
the theoremshould be.On theother hand, since in Euclidean
geometry the area of every regular polygon is proportional to
the second power of the side, the change of preposition
makes clear that the original Pythagorean squares can as well
be replaced by equilateral triangles, regular pentagons,
regular hexagons or any other kind of regular polygon.
Equivalently, since the area enclosed by the circle is again
proportional to the second power of the diameter/radius, the
Pythagorean squares can also be replaced by circles with
diameter/radius equal to the sides of the right triangle. The
reach of the Pythagorean theorem can be extended even
further. In Proposition 31 of Book VI of the Elements, Euclid
himself states that we are actually free to replace the squares
with arbitrary shapes provided they are similar:

In right-angled triangles the figure on the side opposite
to the right angle is equal to the similar and similarly
described figures on the sides containing the right angle.

1There is already a geometrical non-Euclidean generalization of the Pythagorean theorem [5], but it is not entirely satisfactory, because the figure on the hypotenuse is

made to depend on the figures on the sides.
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We obtain infinitely many equivalent geometrical state-
ments (see Figure 1), all summarized by the Pythagorean
formula c2 = a2 + b2, for any right triangle with hypote-
nuse c and legs a and b.

In spherical and hyperbolic geometry there is no con-
cept of similar figures. The areas of regular polygons with
equal sides are no longer proportional. Neither is the area of
the circle proportional to that of a regular polygon with side
equal to its diameter/radius or to that of another circle with
radius equal to its diameter. All Pythagorean statements
become inequivalent and none of them remains associated
with the Pythagorean formula. The question we pose is
whether at least one of these geometrical statements remains
true when generalized to non-Euclidean geometries.
Clearly, any generalization based on similarity is meaning-
less, but what about the ones linked by symmetry? To answer
this question it is first necessary to decide what the gener-
alization of right triangles, regular polygons, and circles is.

For regular polygons and circles, the choice is somehow
forced by symmetry. Not so for right triangles. The standard
and apparently natural choice of identifying the class of
plane right triangles with that of spherical right triangles
is unsatisfactory in many respects. In Euclidean geometry
the role of the right angle is unambiguous, and so is the
distinction between hypotenuse and legs. In spherical
geometry a triangle can have two or even three right
angles—and, correspondingly, two ‘hypotenuses’ and three
‘legs’ or three ‘hypotenuses’ and three ‘legs’. The very
statement of the Pythagorean theorem makes little sense.
If one persists in treating right triangles, the existence in
spherical geometry of equilateral right triangles immediately
provides a counterexample to all Pythagorean statements:
The three figures constructed on the congruent sides are
identical and the area of one of them can not equal the sum
of the areas of the other two.

On the other hand, a plane right triangle can be char-
acterized in many different ways. Just to mention the most
obvious ones:

(a) a triangle with a right angle (whence the name);
(b) a triangle with an angle equal to a half of the sum of its

interior angles;
(c) a triangle obtained by bisecting a rectangle (an equian-

gular quadrilateral, in preparation for non-Euclidean
geometries) by means of its diagonal;

(d) an inscribed triangle having a diameter as a side.

Each characterization potentially provides a different
generalization. The point is whether a generalization exists
satisfying at least one of the infinitely many Pythagorean
statements. To gain insight into this, let us briefly recon-
sider a few basic aspects of spherical geometry.

Spherical Triangles
Spherical geometry can be obtained by replacing Euclid’s
fifth postulate with the statement that no parallel to a given
straight line can be drawn through a point not lying on it (in
order to achieve a consistent system, however, the first and
second postulates must also be partially modified). A model
for such a geometry is the curved surface of a sphere of
arbitrary radius r: Straight lines are identified with great
circles. On the sphere we can draw points, segments, angles,
triangles, every kind of polygon and circles. Spherical tri-
angles, in particular, come early on stage. They appear as
Definition I of Book I of Menelaus’s2 Sphaerica [4]:

A spherical triangle is the space included by arcs of great
circles on the surface of a sphere.

The absence of a strong notion of parallelism on the
sphere invalidates a number of important results of
Euclidean geometry. Most remarkably, Proposition 32 of
Book I of Euclid’s Elements is replaced by:

...

Figure 1. Diagrams representing some of the infinitely many

equivalent variants of the Euclidean Pythagorean proposition.

.........................................................................
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2Menelaus of Alexandria (c. 70–140 CE) was the first to use arcs of great circles instead of parallel circles on the sphere. This marked a turning point in the development

of spherical geometry. Being mainly interested in astronomical measurements and calculations, Menelaus did not consider theorems about area, like the Pythagorean

theorem.
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In any spherical triangle the sum of the three interior
angles is greater than two right angles.

Thus, in spherical geometry (a) above is not equivalent
to (b). This provides us with a first alternative generaliza-
tion of plane right triangles to spherical geometry.

The difference between the sum of the interior angles
and the straight angle

e ¼ sum of interior angles� p

is called the spherical excess of the triangle and is proved to
be proportional to the area A of the triangle itself,

A ¼ r2e:

By triangulation these results straightforwardly extend to
every polygon: In any n-sided spherical polygon, the sum of
the n interior angles is greater than (2n - 4) right angles, and
the areaof thepolygon equals r2 times its spherical excess. In
particular, the sum of the four congruent interior angles of a
spherical square is greater than four right angles. Hence,
these angles are no longer right. The triangulation of a
spherical square bymeans of its diagonal no longer produces
two right triangles. The same holds for every equiangular
quadrilateral. It follows that (a) is not equivalent to (c). This
provides us with a second possible generalization of plane
right triangles to spherical geometry.

A third possibility comes from the failure of Proposition
20 of Book III of Euclid’s Elements and of its corollaries. In
particular:

In a given spherical circle, all inscribed angles sub-
tending the diameter are greater than a right angle.

Inscribed angles subtending the diameter are no longer
right. Therefore, in spherical geometry (a) is not equivalent
to (d).

Quite remarkably, in spherical geometry (b), (c), and (d)
are equivalent.

To see that (c) implies (b), consider Figure 2. Since
equiangular quadrilaterals have opposite sides congruent,
ABC and ACD are congruent. Denote by e their spherical
excess. Since spherical excess is proportional to the area
and the area of the equilateral quadrilateral ABCD equals
the sum of the areas of the triangles ABC and ACD, the
spherical excess of the equiangular quadrilateral equals 2e.
The sum of its interior angles is therefore 2p + 2e. Given
the congruence of the four interior angles, we obtain

\ABC ¼ pþ e
2

:

To prove the opposite implication, we just double a
spherical triangle ABC with \ABC ¼ pþe

2 and join the two
copies along AC with A and C interchanged. Since \BAC þ
\ACB ¼ pþe

2 we obtain an equiangular quadrilateral.
To see that (d) implies (b), denote by e the spherical

excess of the triangle ABC in Figure 3. Draw the segment
OC dividing ABC into two isosceles triangles AOC and
BOC. Denote by e1 the spherical excess of the first one and
by e2 that of the second one. Clearly, e = e1 + e2. Since
\OCA � \OAC , from the first triangle, we obtain

2\OCAþ \AOC ¼ pþ e1;

and since \OCB � \OBC , from the second one we have

2\OCB þ \BOC ¼ pþ e2:

Adding term by term, recalling that \ACOþ \BCO �
\ACB and \AOC þ \BOC ¼ p, we obtain

\ACB ¼ pþ e
2

:

Finally, to prove that (b) implies (d), we consider a
spherical triangle ABC with \ACB ¼ pþe

2 . We now choose
point O on AB such that \ACO equal to \BAC . Thus,
CO:AO. At this point, we observe that \BCO ¼
pþe
2 � \ACO ¼ pþe

2 � \BAC ¼ \CBA. Thus, CO:BO, and
the triangle ABC is inscribed in a circle with diameter AB.

The transition from Euclidean to spherical geometry
seems to preserve the property of ‘having one angle equal
to a half of the sum of its interior angles’ and not the
property of ‘having a right angle’. This provides us with a
promising class of triangles generalizing plane right trian-
gles to non-Euclidean geometries. Let us therefore
introduce a suitable terminology:

We say that a triangle is properly angled, or, equiva-
lently, that it is a proper triangle, when it has an angle
equal to a half of the sum of its interior angles. That
angle is called the proper angle of the triangle; the side
opposite to it, the hypotenuse; and the sides containing it
the legs.

The role of the proper angle is unambiguous, and so is
the distinction between hypotenuse and legs. In plane
geometry the class of proper triangles corresponds to that

A B

CD

Figure 2. Spherical triangles obtained by dividing an equian-

gular quadrilateral by means of its diagonal are not right-

angled.

A B

C

O

Figure 3. Inscribed spherical triangles having a diameter as a

side are not right-angled.
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of right triangles. In spherical geometry the class of proper
triangles shares at least some of the fundamental properties
enjoyed by plane right triangles: Any equiangular quadri-
lateral is divided by means of its diagonal into two proper
triangles; an inscribed triangle having as side a diameter is a
proper triangle. It is then natural to wonder whether
spherical proper triangles enjoy at least one of the infinitely
many symmetric variants of the Pythagorean proposition.
Recalling the formula expressing the area of a spherical
regular polygon of side l,

An�gon ¼ 2pr2 � 2nr2 sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosðl=rÞ � cosð2p=nÞ
cosðl=rÞ þ 1

s

and the formula for the area of a spherical circle of radius r

Acircle ¼ 2pr2 1� cosðr=rÞð Þ;

we can simply proceed to a direct check of all of them. It is a
wonderful surprise to discover that one of them still holds
true.

Pythagoras on the Sphere ...
To pay homage to ancient Greek geometers, we state the
proposition as follows:

In properly angled triangles, the circle on the side
opposite to the proper angle equals [the sum of] the
circles on the sides containing the proper angle.

Here, the words ‘the circle on the side’ mean the area of
the circle having the side as radius; this time there is no risk
of algebraic confusion.

The proposition is illustrated by the beautiful diagram of
Figure 4. It is also immediate how to give an analytical proof
of it. Parametrizing the sphere by standard spherical coor-
dinates h and /, we consider an arbitrary equiangular
quadrilateral ABCD centered at the north pole and with
diagonal on the great circle through the pole and (1, 0). Its
vertices lie at Aðĥ; 0Þ, Bðĥ; /̂Þ, Cðĥ; pÞ, Dðĥ; /̂� pÞ, for some
angles ĥ and /̂. Given the equivalence of (b) and (c), ABC is
an arbitrary proper triangle. By means of the spherical dis-
tance formula for generic points PðhP ;/PÞ and Q(hQ, /Q),

PQ ¼ r cos�1 cos hP cos hQ þ sin hP sin hQ cosð/Q � /PÞ
� �

;

we evaluate the lengths of the sides as

AB ¼ r cos�1ðcos2 ĥþ sin2 ĥ cos /̂Þ;

BC ¼ r cos�1ðcos2 ĥ� sin2 ĥ cos /̂Þ;

AC ¼ r cos�1ðcos2 ĥ� sin2 ĥÞ:

Dividing by r and taking the cosine of the resulting
expressions we have

cosðAB=rÞ ¼ cos2 ĥþ sin2 ĥ cos /̂;

cosðBC=rÞ ¼ cos2 ĥ� sin2 ĥ cos /̂;

cosðAC=rÞ ¼ cos2 ĥ� sin2 ĥ:

Adding the first two equalities and comparing the result
with the third one, after a very little algebra we obtain

2pr2ð1� cosðAC=rÞÞ ¼ 2pr2ð1� cosðAB=rÞÞ

þ 2pr2ð1� cosðBC=rÞÞ:

Recalling the formula for the area of the spherical circle in
terms of its radius, we recognize the spherical Pythagorean
proposition. Clearly, in the limit of a large radius of curvature
r, this expression reduces to the Pythagorean formula
AC

2 ¼ AB
2 þ BC

2
:

... and on the Hyperbolic Plane
The proposition straightforwardly extends to the less intuitive
hyperbolic geometry. This is proved pretty much in the same
way. As hyperbolic plane model we consider the quadric

x2 þ y2 � z2 ¼ �r2

embedded in the Minkowskian space R2;1. By introducing
hyperbolic polar coordinates

x!¼ ðr sinh w cos /; r sinh w sin /; r cosh wÞ;

the plane is parametrized by the hyperbolic latitude w,
w C 0, and by the longitude /, - p\/ B p. The distance
formula for generic points P(wP, /P), Q(wQ, /Q) reads

PQ ¼ r cosh�1

cosh wP cosh wQ � sinh wP sinh wQ cosð/Q � /PÞ
� �

:

As in spherical geometry, proper triangles are obtained by
dividing equiangular quadrilaterals by means of their diag-
onals. Hence, we again consider an arbitrary equiangular
quadrilateral ABCD centered at the pole (0, 0), with diagonal
along the hyperbolic line through the pole and (1, 0). The
vertices lie at Aðŵ; 0Þ, Bðŵ; /̂Þ, Cðŵ; pÞ, Dðŵ; /̂� pÞ, for
somevalues ŵ and /̂ . ABC is an arbitrary proper triangle. The
lengths of its sides are evaluated as

AB ¼ r cosh�1ðcosh2 ŵ � sinh2 ŵ cos /̂Þ;
BC ¼ r cosh�1ðcosh2 ŵ þ sinh2 ŵ cos /̂Þ;
AC ¼ r cosh�1ðcosh2 ŵ þ sinh2 ŵÞ:

Dividing by r, taking the hyperbolic cosine of the
three expressions, and recalling the identity sinh2 x ¼
cosh2 x � 1, after some algebra we obtainFigure 4. The spherical Pythagorean proposition.
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2pr2ðcoshðAC=rÞ � 1Þ ¼ 2pr2ðcoshðAB=rÞ � 1Þ
þ 2pr2ðcoshðBC=rÞ � 1Þ:

Recalling the formula for the area of an hyperbolic circle
of radius r

Acircle ¼ 2pr2 coshðr=rÞ � 1ð Þ;

we recognize the hyperbolic Pythagorean proposition. The
Euclidean Pythagorean formula is again obtained in the
limit of a large radius of curvature r.

Epilogue
The Pythagorean theorem is generally claimed to be
equivalent to Euclid’s fifth postulate. If so, then it can hold
only in Euclidean geometry. As we have seen in this paper,
this very much depends on how the proposition is under-
stood. If we insist on squares on the sides of right triangles,
no doubt the claim is true. Nevertheless, if we take a
slightly wider viewpoint by considering all the equivalent
variants of the theorem, and classes of triangles that better
embody the properties of plane right triangles in non-
Euclidean geometry, we come to a statement that equally
holds in Euclidean, spherical, and hyperbolic geometry.

Since it is true in Euclidean and hyperbolic geometry,
this statement belongs to neutral geometry. In principle, it
could be included among the first 28 propositions of the
Elements and should be capable of a proof in terms of the

first four Euclidean postulates. Since it is also true in
spherical geometry, the statement should actually follow
from an even smaller set of axioms. In any case, it repre-
sents a more basic theorem about area than the original
Pythagorean theorem (as in Euclidean geometry, spherical
and hyperbolic polygons of the same area are related by
scissor congruence [2]).

In this paper we presented an analytical proof of the
spherical and hyperbolic Pythagorean propositions. In the
final analysis, this proof follows from the Euclidean
Pythagorean proposition itself. It goes without saying that a
synthetic proof based on a minimal choice of postulates
would be of great interest.
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